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Purpose

■ Describe models for efficiently 
interdicting a general “system” 
belonging to an adversary, e.g., an 
economy, a segment of an economy, 
energy production, munitions 
production, a nuclear program

■ Show how to extend those bi-level 
interdiction models to tri-level system 
defense (interdict the interdictor)
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Assumptions

■ Our adversary wishes to maximize the 
output of his system

■ We wish to minimize that output by 
“interdicting” parts of his system

■ We have limited interdiction resources
■ Interdiction: attack, sabotage, 

embargo, litigate, freeze funds
■ Interdiction stops a single “activity” of 

the adversary (partial interdiction 
possible, too)
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Minimize the max output of a system 
modeled as a linear program

x ≡ binary interdiction variables
X ≡ interdiction resource constraints and

binary restrictions
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Tri-level System Defense

Let wk = 1 if we harden activity k against attack
= 0 otherwise

W  are constraints on defense (hardening) resources,
and the fact that the wk are binary
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Tri-level system defense: 
Interdict the interdictor
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Back to bi-level interdiction

Can take the dual of the inner maximization and get a
nonlinear “min min model” = “min model.”
Reformulate to get a linear model.

Let πk′′ be an upper bound on the value to the
adversary of one unit of capacity for activity k
(upper bnd on dual variables for capacity constraints)
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Convex reformulation
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Conversion to a Mixed Integer
Program (MIP)
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Where Π′′ is a diagonal matrix 
of those upper bounds π′′ on 
the dual variables



10

That’s nice

■ Can we solve the problem?
■ Theoretically, yes.  In practice, maybe.
■ Benders decomposition is a useful 

approach
■ But, if those bounds are weak, it won’t 

work very well: You can’t just guess a 
huge number for the πk′′
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Benders decomposition with 
bad dual bounds

Will still work…in theory
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Better off with a “covering 
decomposition” when appropriate

■ It will be OK if the total number of 
activities that the adversary can 
engage in at one time is small, at least 
in comparison to the total number of 
activities he might engage in

■ For instance:  The adversary wants to 
build 5 power plants and has 50 
possible locations; the interdictor’s 
task is minimize power production by 
making some subset of the locations 
untenable
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Covering Decomposition for 
the Power-Plant Example

Algorithm 2: Covering decomp for EPPs;
Output:  An optimal interdiction plan;
Step 0:   x ← 0;
Step 1:  Given interdiction plan x, find the 

adversary’s best set of plant locations ŷ and 
obj value zx;  Save “siting plan” ŷ; (Note: IP)
If x is the best interd’n plan so far, save it;

Step 2:  Try to “cover” all the siting plans ŷ
seen so far with a new interdiction plan x.
If you can cover them, go to Step 1 with x;

Step 3:  Otherwise: Print the best interdiction 
plan found and Stop;  /* best x is optimal */
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Covering Decomp: Example

■ Shortest-path interdiction example 
(max-min, not min-max, but…)
– Each arc marked with label & length
– Interdiction destroys arc completely
– Can interdict only two arcs
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First interdiction plan: x=0, 
do nothing
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2nd interdiction plan: 
interdict b and c

NU response: Take path d,b,c; length = 3

Yields this covering problem:

NU response: Take path d,e; length = 4

Yields this covering problem:
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3rd interdiction plan: 
interdict d and e
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4th interdiction plan: 
interdict a and d

NU response: Take path a,c; length = 4

Yields this covering problem:

NU response: Take path f,g; length = 5

Yields this covering problem:

INFEASIBLE!

Last interdiction 
plan a, d was best 
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A note about the example

■ It is a simple example and we looked at 
every path in G

■ But the problem below has the same 
solution and we would not enumerate 
all paths: The method can be 
“efficient.”
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Tri-level System Defense

■ Suppose the enemy has an interdiction 
model of our economy, or a regional 
power network in the US, or NMCI or ??

■ How do we harden our systems against 
potential (interdiction) attack?

■ Ad hoc solution:  Study the results of 
interdiction models to look for critical 
components in our systems.

■ Formal solution: Interdict the interdictor
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Tri-level System Defense

Let wk = 1 if we harden activity k against attack
= 0 otherwise

W  are constraints on defense (hardening) resources,
and the fact that the wk are binary
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System Defense: 
Interdict the interdictor
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Covering decomposition for
tri-level system defense

Algorithm 2: Interdicting the interdictor;
Output:  An optimal defense plan;
Step 0:   w ← 0;
Step 1: For defense plan w, find the adversary’s 

best interdiction plan and obj value z;
If w is the best defense plan so far, save it;

Step 2:  Try to “cover” all the interdiction plans
seen so far with a new defense plan w.
If you can cover them, go to Step 1 with w;

Step 3:  Otherwise: Print the best interdiction 
plan found and Stop;  /* best w is optimal */
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Computational results: 10×10 grid
RS6000, Model 595, about 400 1st-stage vars., defend/interdict 5 arcs
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